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1. Limits.

1.1 Caleulotion

lim x@ = x§ for any real number a and any point X, so that x§ is defined;
X—Xq

« lim e* = e*o for any real number X;
X=X

« lim Inx = Inx, for any real number x, > 0;
X—Xq

« lim sinx =sinxy and lim cosx = cos x, for any real number x;
X=X X=X

. sinx
e |liIMm —=1.
x->0 X

and the following rules of calculating limits:

« lim(cf +dg) =clim f + dlim g, where f, g are functions and c, d are real constants;

« lim(fg) = (lim f)(lim g) where f, g are functions so that their limits exist;

o lim <£> = |||m_f where f, g are functions so that their limits exist and the limit of g is non-zero;
g mg

« lim(f og) = f(limg) if f, g are functions, f is continuous and the limit of g exists.



There’s another way to compute limit: using the definition of derivatives. That is, if a limit is of the

form
lim f(x+h)— f(x)
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1.3 Definition. A function f is continuous at a real number a if lim f(x) = f(a).
X—=a

1.4 Definition. A function f is differentiable at a point a if there is a finite real number L so that

i L1 L

G f/(x) = 7—— in (4, 'O)_
1.6 Problem. Consider the function f defined by fis ontinsus in (- o )
— 00,2

; 2
M 48, ifx<O0.

(a —xb)x +2a, ifx>0 and in (O’TW).

f(X)={

1. Determine the value of the constant a for which f is continuous at @ = 0. You must carefully justify

your answer.

2. Determine the values of the constants a and b for which f is differentiable at x = 0. You must carefully
justify your answer.

. ) h S 2 . in § 2
Soluion. 1. ,ggvg_ 0= Lim (sm X 4(8> = g*;&;ﬂg—(&%; °5X> = 3fl0 =J.

*+0-

lin Log = Lim (0bxna) = 0

KXot Xx—r0+
/Q}m

x—yot
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Q Der'waﬂ\les .  (x%) = ax®! for any real number a;

/
« (sinx)’ = cosx and (cosx)’ = —sin x; @I(Xz)) — 6((5) ‘(?X)

« (@) =a*Inaforany a >0buta #1;

0.1 Computati'ons.
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2.2. Tmplicit Differentiotion.
2.3 Problem. Consider the curve given by the equation
sin(xy) = cosy + x.

Find the tangent line to this curve at the point (1,@, and use this to give an estimate of the y-value for a
nearby point on the curve where x = 0.98. -

Lineas  approximosion
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2.3. Mean Value Theorems,

2.4 Theorem (Fermat). Let f be a function continuous on [a, b] and differentiable in (a,b). Ifa < ¢ < b
is an extreme point of f, then f'(c) = 0.

2.5 Theorem (Rolle). Let f be a function continuous on [a, b] and differentiable in (a, b) so that f(a) =
f(b), then there is a < ¢ < b such that f'(c) = 0.

2.6 Theorem (Mean Value Theorem). Let f be a function continuous on [a, b] and differentiable in (a, b),
then there is a real number a < ¢ < b so that

f’(C) — f(b; : i:(d)

There’s a theorem not quite related to derivatives, but we always combine these results together to
solve problems.

2.7 Theorem (Intermediate Value Theorem). If f is continuous in the interval [a, b] and f(a)f(b) < 0,
then there exists a < ¢ < b such that f(c) = 0.

And there’s an existence theorem about absolute extrema:

2.8 Theorem. If f is a continuous function on [a, b], then f must have an absolute maximum and an
absolute minimum.
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2.11 Problem. Let f(x) = x* + x — 3.
1. Show that f(x) has a root in the interval |[—2,0], and a root in the interval [0, 2].

2. Show that f(x) does not have more than two roots.
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3. Cusve Shewh'l?g.

1
(x* +1)3
1 —

1. Investigate for the existence of horizontal and vertical asymptotes of the graph of f. Your answer must
1

3.3 Problem. Consider the function f(x) = on the domain (—o0,1) U (1, +00).

be supported by the careful calculation of relavant Imits.(Hint: (x*)2 = |x|)

2 _
2. f'(x) = (X + 1) —x + i) Note that (x> — x + 1) is always positive. Study the sign of f’, then

(1—x)2(x*+1)4
determine the intervals of increase, and of decrease of f. Indicate the values of local extrema, if any.

1.64
3 f"(x)= (x+_—6)M(x), where M(x) > 0. Study the sign of f", then determine the intervals where

f is concave up, and where it is concave down. List all inflection points, if any.

4. Based on all the information gathered in the previous questions, sketch the graph of f as accurately as
1

possible. Include all relevant facts as well as some remarkable points.(Hint: 24+ =~ 1.2; f(—1.64) ~
0.65)

Solution :



2 .
F/(JQ (’)(—H) (x*=x+l ) _F ‘(O() = Q‘—f—_l%{) M(x), qu 20.
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4. Applica*-‘mns.

4.3 Problem. It’s a hot dayin L. A. and Carina has an ice cream cone. The ice cream is leaking into the cone
at a rate of 3/2cm?> per second. Given that the cone is 10cm high, with a radius at the largest end of 3cm, at
the moment when the leaked ice cream fills half-way down the cone, what is the rate of change of the height
of the liquid ice cream in the cone?(Hint: the formula for the volume of a right circular cone is V = Larh
where r is the radius of the cone, and h is the height.)

So\d:\"ron P



4.7 Problem. A deposit of ore contains 100-mg of radium-226, which undergoes radioactive decay. After 500

years, 80.4% of the original mass of radium-226 remains® 2
1. Find the mass m(t) of radium-226 that remains after t years. %PDT\W\QL dimﬁ
_ v
2. What is the half-life of radium-226? mel=Ce
3. When will there be 20-mg of radium-226 remaining? m)= C =(0D “(\3 :
\ : = va /\ = (- = \ D
Solution: 1 C oo, © | 0-8F. N RE Q”L gnf) (o) = Cegw‘
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B. Quiz lost time.
Problem 1. (8 points) Let

F(x) = —/ In(sint)dt, 0 <z < /7.

Show that F is invertible and find (F~!)/(0). (The result will be a little bit complicated, believe in
yourself!)

Foof & Selution






