Inal Rowen

Siyang Liu

Dec. 7th, 2021.

1. Limits.

1.1. Calculation

- $\lim_{x \to x_0} x^a = x_0^a$ for any real number a and any point x_0 so that x_0^a is defined;
- $\lim_{x \to x_0} e^x = e^{x_0}$ for any real number x_0 ;
- $\lim_{x \to x_0} \ln x = \ln x_0$ for any real number $x_0 > 0$;
- $\lim_{x \to x_0} \sin x = \sin x_0$ and $\lim_{x \to x_0} \cos x = \cos x_0$ for any real number x_0 ;
- $\lim_{x \to 0} \frac{\sin x}{x} = 1.$

and the following rules of calculating limits:

- $\lim(cf + dg) = c \lim f + d \lim g$, where f, g are functions and c, d are real constants;
- $\lim(fg) = (\lim f)(\lim g)$ where f,g are functions so that their limits exist;
- $\lim \left(\frac{f}{g}\right) = \frac{\lim f}{\lim g}$ where f, g are functions so that their limits exist and the limit of g is non-zero;
- $\lim(f \circ g) = f(\lim g)$ if f, g are functions, f is continuous and the limit of g exists.

There's another way to compute limit: using the definition of derivatives. That is, if a limit is of the form

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$iv) \lim_{x\to 1} \frac{\ln x - \ln 1}{x-1};$$

v)
$$\lim_{x \to -\infty} \frac{e^{2x}}{e^x + 3e^{2x}}$$
 and $\lim_{x \to +\infty} \frac{e^{2x}}{e^x + 3e^{2x}}$.

Solution: iv) Special limit from Sec. 5.4:
$$e = \lim_{x \to 0} (1+x)^{\frac{1}{x}}$$

Solution: iv) Special limit from Sec. 5.4:
$$e = \lim_{x \to 0} (1+x)^{\frac{1}{x}}$$

$$\lim_{x \to 1} \frac{\ln x - \ln 1}{x - 1} = \lim_{x \to 1} \ln x \times \frac{1}{\ln x} = \lim_{x \to 1} \ln (1+(x-1))^{\frac{1}{x-1}}$$

$$= \ln e = 1. \text{ (ln is continuous)}$$

$$= 2n e = 1. \text{ (ln is continuous)}$$

V)
$$\lim_{x \to -\infty} e^{x} = 0$$
, $\lim_{x \to +\infty} e^{x} = +\infty$.

$$\lim_{x\to-\infty}\frac{e^{2x}}{e^x+3e^{2x}}=\lim_{x\to-\infty}\frac{e^x}{1+3e^x}=\frac{\lim_{x\to-\infty}e^x}{\lim_{x\to-\infty}(1+3e^x)}=\frac{0}{1+3\cdot 0}=0.$$

$$\lim_{x \to +\infty} \frac{e^{2x}}{e^x + 3e^{2x}} = \lim_{x \to +\infty} \frac{1}{e^{-x} + 3} = \frac{1}{3 \cdot 0} = \frac{1}{3 \cdot 0}$$

1.2. Continuity & Differentiability

- **1.3 Definition.** A function f is **continuous** at a real number a if $\lim_{x \to a} f(x) = f(a)$.
- **1.4 Definition.** A function f is **differentiable** at a point a if there is a finite real number L so that $\lim_{x \to a} \frac{f(x) f(a)}{x a} = L.$

$$f(x) = \frac{1}{x^{2}} \quad \text{in } (-\infty_{1} \circ)$$

$$1.6 \text{ Problem. Consider the function } f \text{ defined by} \qquad f \text{ is continuous in } (-\infty_{1} \circ)$$

$$f(x) = \begin{cases} \frac{\sin 5x^{2}}{x} + 8, & \text{if } x < 0. \\ (a - b)x + 2a, & \text{if } x \ge 0 \end{cases}$$

$$\text{and in } (\circ_{1} + \infty_{1}).$$

- 1. Determine the value of the constant a for which f is continuous at $\bullet = 0$. You must carefully justify your answer.
- 2. Determine the values of the constants a and b for which f is differentiable $\underline{at x = 0}$. You must carefully justify your answer.

Solution. 1.
$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \left(\frac{\sin 5x^{2}}{x} + 8 \right) = 8 + \lim_{x \to 0^{-}} \left(\frac{\sin 5x^{2}}{5x^{2}} \cdot 5x \right) = 8 + 1 \cdot 0 = 8$$
.

 $\lim_{x \to 0+} f(x) = \lim_{x \to 0+} \left((\alpha - b)x + 2a \right) = 2a$

f is continuous at
$$x=0$$
 if $\lim_{k\to 0^-} f(x) = \lim_{k\to 0^+} f(x)$ so $2a=8$, $a=4$. Is finite only if $h<0$.

2. $\lim_{h\to 0^-} \frac{f(h)-f(0)}{h-0} = \lim_{h\to 0^-} \frac{1}{h} \cdot \left(\frac{\sin 5h^2}{h} + 8 + 2a\right) = \lim_{h\to 0^-} \left(\frac{\sin 5h^2}{5h^2} \cdot 5 + \frac{8-2a}{h}\right) = 1.5 = 5$

 $\lim_{h\to 0} \frac{f(h)-f(o)}{h-o} = \lim_{h\to 0+} \frac{1}{h} (\underbrace{(a-b)h+2a-2a}) = a-b. = 4-b \quad \text{f differentiable at } x=o \text{ if}$ $4-b=5, \text{ that is, } b=-1. \square$

•
$$(x^a)' = ax^{a-1}$$
 for any real number a ;

•
$$(\sin x)' = \cos x$$
 and $(\cos x)' = -\sin x$;

•
$$(a^x)' = a^x \ln a$$
 for any $a > 0$ but $a \neq 1$;

$$\left(G_{1}(x^{2})\right)' = G^{\prime}(x^{2}) \cdot [2x]$$

$$= \frac{x^{2}}{x^{8}+1} \cdot 2x$$

•
$$(\log_a x)' = \frac{1}{x \ln a}$$
 for any $a > 0$ but $a \ne 1$.

and using some derivation rules:

•
$$(cf + dg)' = cf' + dg'$$
 for any differentiable functions f , g and any constants c , d ;

•
$$(fg)' = f'g + fg'$$
;

•
$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2};$$

$$\int_{1\overline{X}}^{X^2} \frac{\theta}{\theta^4 + 1} d\theta = \int_{\alpha}^{X^2} \frac{\theta}{\theta^4 + 1} d\theta \left[+ \int_{1\overline{X}}^{\alpha} \frac{\theta}{\theta^4 + 1} d\theta \right]$$

$$o\left[t\int_{JX}^{\alpha}\frac{0}{0^{4}+1}d0\right]$$

•
$$(f(g(x)))' = f'(g(x))g'(x)$$
.

$$(3) F(x) = \int_{\sqrt{x}}^{x^2} \frac{\theta}{\theta^4 + 1} d\theta;$$

$$(3.)F(x) = \int_{\sqrt{x}}^{x^2} \frac{\theta}{\theta^4 + 1} d\theta;$$

$$Solution: 3. F(x) = \int_{0}^{x^2} \frac{\theta}{\theta^4 + 1} d\theta - \int_{0}^{x} \frac{\theta}{\theta^4 + 1} d\theta.$$

$$=6(x^2)-6(\sqrt{x}),$$

$$=6(x^2)-6(\sqrt{x}), \qquad 6(x)=\int_0^x \frac{9}{9^4+1}d9$$

$$4. \ y = \frac{\tan x}{x};$$

$$2x6(x^2) - \frac{1}{2\sqrt{x}}6'(\sqrt{x}) \stackrel{\triangle}{=} \text{chain rule}.$$

$$(5.) f(x) = (1+x)^{\frac{1}{x}}.$$

$$4. \ y = \frac{\tan x}{x};$$

$$50 \ F'(x) = 2x G'(x^2) - \frac{1}{2|x|} G'(y) \xrightarrow{4} - \text{chain rule.}$$

$$(5.) \ f(x) = (1+x)^{\frac{1}{x}}.$$

$$(5.) \ f(x) = (1+x)^{\frac{1}{x}}.$$

$$(5.) \ f(x) = (1+x)^{\frac{1}{x}}.$$

$$(7.) \ f$$

5.
$$f(x) = e^{\frac{1}{x} ln(xtt)}$$
, so $f'(x) = e^{\frac{1}{x} ln(xtt)} \left(\frac{1}{x} ln(xtt) \right)' = \left(\frac{1}{x^2} ln(xtt) + \frac{1}{x(xtt)} \right) e^{\frac{1}{x} ln(xtt)}$

$$ln y = \frac{1}{x} ln(tx), \quad then \quad \frac{1}{y} y' = \frac{1}{x^2} ln(xtt) \cdot [l+x)^{\frac{1}{x}}. \quad ln = \frac{1}{x^2} ln(xtt)$$

2.2. Implicit Differentiation.

2.3 Problem. Consider the curve given by the equation

$$\sin(xy) = \cos y + x.$$

Find the tangent line to this curve at the point $(1,\pi)$, and use this to give an estimate of the y-value for a nearby point on the curve where x = 0.98.

Solution. take derivative write x:

take derivative where
$$x = 0.98$$
.

$$\frac{d}{dx}\sin(xy) = \frac{d}{dx}\left(\cos y + x\right).$$

$$\cos(xy)\left(y + x\frac{dy}{dx}\right) = \left(-\sin y\right)\frac{dy}{dx} + 1.$$

$$(x\cos xy + \sin y)\frac{dy}{dx} = 1 - y\cos(xy).$$

$$\frac{dy}{dx} = \frac{1 - y\cos(xy)}{x\cos xy + \sin y}$$

$$\frac{dy}{dx} = \frac{1 - y\cos xy}{x\cos xy + \sin y}$$

when $x = 1$ and $y = \pi$, $\frac{dy}{dx} = \frac{1 - \pi\cos\pi}{1 \cdot \cos\pi + \sin\pi} = \frac{1 + \pi}{-1} = -(\pi + 1)$

so the tangent line at $(1,\pi)$ is $y - \pi = -(\pi + 1)(x - 1)$

2.3. Mean Value Theorems.

- **2.4 Theorem** (Fermat). Let f be a function continuous on [a, b] and differentiable in (a, b). If a < c < b is an extreme point of f, then f'(c) = 0.
- **2.5 Theorem** (Rolle). Let f be a function continuous on [a, b] and differentiable in (a, b) so that f(a) = f(b), then there is a < c < b such that f'(c) = 0.
- **2.6 Theorem** (Mean Value Theorem). Let f be a function continuous on [a, b] and differentiable in (a, b), then there is a real number a < c < b so that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

There's a theorem not quite related to derivatives, but we always combine these results together to solve problems.

2.7 Theorem (Intermediate Value Theorem). If f is continuous in the interval [a, b] and f(a)f(b) < 0, then there exists a < c < b such that f(c) = 0.

And there's an existence theorem about absolute extrema:

2.8 Theorem. If f is a continuous function on [a, b], then f must have an absolute maximum and an absolute minimum.

2.9 Problem. Show that $\sqrt{1+x} \le \sqrt{2} + \frac{x-1}{2\sqrt{2}}$ for $x \ge 1$. Proof: $\sqrt{1+x} \le \sqrt{2} + \frac{x-1}{2\sqrt{2}}$ is the same as $\sqrt{1+x} - \sqrt{2} \le \frac{x-1}{2\sqrt{2}}$.

divide both sides by x-1 and because x-1>0, (if x=1, then $5 \le 5$)

$$\frac{\int f(x) - \int g(x)}{|x| - 1} \le \frac{1}{2b}.$$
how we think of this.

what we actually write down.

if we assume $f(x) = \sqrt{f(x)}$, then $f(1) = \sqrt{2}$, so we get by mean value theorem, a $f(x) = \sqrt{2}$

$$|\langle C \langle \chi \rangle \rangle = \frac{1}{2 \sqrt{1 + \chi}} = \frac{1}{2 \sqrt{1 + \chi}$$

so we get
$$\frac{\sqrt{1+x-12}}{x-1} < \frac{1}{2\sqrt{2}}$$
 when $x>1$, so $\sqrt{1+x}-\sqrt{2} < \frac{1}{2\sqrt{2}}(x-1)$.

So
$$\sqrt{1+x} < \sqrt{2} + \frac{x-1}{2\sqrt{2}}$$
 when $x>1$, & $\sqrt{1+x} \le \sqrt{2} + \frac{x-1}{2\sqrt{2}}$ when $x>1$. $\sqrt{1+x} \le \sqrt{2} + \frac{x-1}{2\sqrt{2}}$ when $x>1$.

2.11 Problem. Let $f(x) = x^4 + x - 3$.

- 1. Show that f(x) has a root in the interval [-2,0], and a root in the interval [0,2].
- 2. Show that f(x) does not have more than two roots.

Proof: 1
$$f(x) = 4x^3 + 1$$
 has one rost $-\frac{3}{4}$.

 $f(x) = 4x^3 + 1$ has one rost $-\frac{3}{4}$.

 $f(x) = 6x^3 + 1 = 0$ $f(x) = -\frac{4}{4}$.

 $f(x) = 6x^3 + 1 = 0$ $f(x) = -\frac{4}{4}$.

 $f(x) = 6x^3 + 1 = 0$ $f(x) = -\frac{4}{4}$.

 $f(x) = 6x^3 + 1 = 0$ $f(x) = -\frac{4}{4}$.

 $f(x) = 6x^3 + 1 = 0$ $f(x) = -\frac{4}{4}$.

 $f(x) = 6x^3 + 1 = 0$ $f(x) = -\frac{4}{4}$.

 $f(x) = 6x^3 + 1 = 0$ $f(x) = -\frac{4}{4}$.

 $f(x) = 6x^3 + 1 = 0$ $f(x) = -\frac{4}{4}$.

 $f(x) = 6x^3 + 1 = 0$ $f(x) = -\frac{4}{4}$.

 $f(x) = 6x^3 + 1 = 0$ $f(x) = -\frac{4}{4}$.

 $f(x) = 6x^3 + 1 = 0$ $f(x) = -\frac{4}{4}$.

 $f(x) = 6x^3 + 1 = 0$ $f(x) = -\frac{4}{4}$.

 $f(x) = 6x^3 + 1 = 0$ $f(x) = -\frac{4}{4}$.

 $f(x) = 6x^3 + 1 = 0$ $f(x) = -\frac{4}{4}$.

 $f(x) = 6x^3 + 1 = 0$ $f(x) = -\frac{4}{4}$.

 $f(x) = 6x^3 + 1 = 0$ $f(x) = -\frac{4}{4}$.

 $f(x) = 6x^3 + 1 = 0$ $f(x) = -\frac{4}{4}$.

 $f(x) = 6x^3 + 1 = 0$ $f(x) = -\frac{4}{4}$.

 $f(x) = 6x^3 + 1 = 0$ $f(x) = -\frac{4}{4}$.

 $f(x) = 6x^3 + 1 = 0$ $f(x) = -\frac{4}{4}$.

 $f(x) = 6x^3 + 1 = 0$ $f(x) = -\frac{4}{4}$.

 $f(x) = 6x^3 + 1 = 0$ $f(x) = -\frac{4}{4}$.

 $f(x) = 6x^3 + 1 = 0$ $f(x) = -\frac{4}{4}$.

 $f(x) = 6x^3 + 1 = 0$ $f(x) = -\frac{4}{4}$.

 $f(x) = 6x^3 + 1 = 0$ $f(x) = -\frac{4}{4}$.

 $f(x) = 6x^3 + 1 = 0$ $f(x) = -\frac{4}{4}$.

 $f(x) = 6x^3 + 1 = 0$ $f(x) = -\frac{4}{4}$.

f(x)=0
$$4x^3+1=0$$
 $x^3=-\frac{1}{4}$
by intermediate value +hm,
f has a not in [-2.0]

- 2. If f has at least 3 rwts, then by Rolle's theorem. I has two distinct rusts. which is a contradiction blc f' has only one not. []
- If we don't know the number of nots, then we need to determine the interval where fix in creasing or decreasing

$$x=-\sqrt{4}$$
 a critical pt of f.

or decreasing
$$x = \sqrt{4} \text{ a critical pt of f.}$$

$$(-\sqrt{3}\sqrt{4}, +\sqrt{8}) \text{ at most 1}$$

$$(-\sqrt{3}\sqrt{4}, +\sqrt{8}) \text{ at most 1}$$

Out most 2 nots of f. f(-3|f|).

exactly 2 nots: use IVT. f(-2) f(-2) f(-3) f(-3)

3. Curve Sketching.

- **3.3 Problem.** Consider the function $f(x) = \frac{(x^4 + 1)^{\frac{1}{4}}}{1 x}$ on the domain $(-\infty, 1) \cup (1, +\infty)$.
 - 1. Investigate for the existence of horizontal and vertical asymptotes of the graph of f. Your answer must be supported by the careful calculation of relavant lmits.(**Hint:** $(x^4)^{\frac{1}{4}} = |x|$)
 - 2. $f'(x) = \frac{(x+1)(x^2-x+1)}{\frac{3}{4}}$. Note that (x^2-x+1) is always positive. Study the sign of f', then determine the intervals of increase, and of decrease of f. Indicate the values of local extrema, if any.
 - 3. $f''(x) = \frac{(x+1.64)}{1-x}M(x)$, where M(x) > 0. Study the sign of f'', then determine the intervals where f is concave up, and where it is concave down. List all inflection points, if any.
 - 4. Based on all the information gathered in the previous questions, sketch the graph of f as accurately as possible. Include all relevant facts as well as some remarkable points.(Hint: $2^{\frac{1}{4}} \approx 1.2$; $f(-1.64) \approx 0.65$)

Solution:

$$f(x) = \frac{(x^{t} + 1)^{\frac{1}{4}}}{1 - x} , \qquad f'(x) = \frac{(x + 1)(x^{2} - x + 1)}{(1 - x)^{2}(x^{4} + 1)^{\frac{1}{4}}} , \qquad f'(x) = \frac{(x + 1 \cdot 64)}{1 - x} M(x), \quad M(x) > 0.$$

4. Applications.

4.3 Problem. It's a hot day in L. A. and Carina has an ice cream cone. The ice cream is leaking into the cone at a rate of 3/2cm³ per second. Given that the cone is 10cm high, with a radius at the largest end of 3cm, at the moment when the leaked ice cream fills half-way down the cone, what is the rate of change of the height of the liquid ice cream in the cone?(Hint: the formula for the volume of a right circular cone is $V = \frac{1}{3}\pi r^2 h$ where r is the radius of the cone, and h is the height.)

4.7 Problem. A deposit of ore contains 100-mg of radium-226, which undergoes radioactive decay. After 500 years, 80.4% of the original mass of radium-226 remains.

- 1. Find the mass m(t) of radium-226 that remains after t years.

2. What is the half-life of radium-226?

3. When will there be 20-mg of radium-226 remaining?

Solution: 1.
$$C = LOO$$
, $C = LOO$ $C = L$

2.
$$M(f) = 50$$
. $e^{\frac{1}{20}} \ln(0.806) = \frac{1}{2}$.

$$t = -\ln 2 \cdot \frac{500}{\ln 0.84!} \quad 1006 e^{500\lambda} = 100 \cdot 80.4\%$$

$$\frac{1}{500} \ln(0.804) + = \ln \frac{1}{2}.$$

$$500\lambda = \ln(0.804)$$

$$3. \text{ M(t)} = 20 \quad \text{solve for } +.$$

$$t = 500 \cdot \frac{\ln \frac{1}{2}}{2n(0.804)}$$

$$m(0) = C = 100 \text{ arg}.$$

$$m(500) = Ce^{500\lambda}$$

$$=80.4 \text{ mg}$$

$$80.4\% \cdot (00 \text{ ng})$$
.
 $96 e^{500\lambda} = 100 \cdot 80.4\%$

5. Quiz last time.

Problem 1. (8 points) Let

$$F(x) = -\int_{\frac{\pi}{4}}^{x^3} \ln(\sin t) \, dt, \ 0 < x < \sqrt[3]{\pi}.$$

Show that F is invertible and find $(F^{-1})'(0)$. (The result will be a little bit complicated, believe in yourself!)

Proof & Solution:

Good Luck!